

The Color Of Water

USING UNDERWATER PHOTOGRAPHY TO ESTIMATE WATER QUALITY

John Breneman IV, Henryk Blasinski, Joyce Farrell CASIS Workshop, LLNL 5/21/2014

Underwater color is a challenge

This talk

- 1. Motivation
- 2. Extending the image formation model
 - a. Spectral basis functions
 - b. Medium scatter factors
- 3. Model evaluation
 - a. Prediction of real world dive data
 - b. Water content charts
- 4. Effect on color correction techniques
 - a. 3x3 vs 3x4 color corrections

Why a physical model for underwater lighting?

- 1. Better understanding of oceanic composition
 - A. What's the "viz" at a popular dive site? Murky or Clear?
 - B. Is there a plankton bloom?

Roesler et al, 1989

- 2. Insights for correcting underwater color images
 - A. Why are underwater dive filters so popular?
 - B. What form should our color correction take?
 - C. How can we identify the best color transform for a picture?

Standard Linear Image Formation Model

Lossy Medium

$$m_j = g_j D / \sum_{l=1}^{N} s_{j,l} r_l I_{0,l} e^{-D_p a_l}$$

Lossy Medium With Absorption Basis

$$\alpha_{\lambda} = \alpha_{w,\lambda} + \alpha_{\Phi,\lambda} + \alpha_{CDOM,\lambda} + \alpha_{NAP,\lambda}$$

$$= \alpha_{w,\lambda} + c_{\Phi}\beta_{\Phi,\lambda} + c_{CDOM}\beta_{CDOM,\lambda} + c_{NAP}\beta_{NAP,\lambda}$$

$$m_j = g_j D / \sum_{l=1}^{N} s_{j,l} r_l I_{0,l} e^{-D_{0,l}}$$

Lossy Medium With Absorption Basis

$$m_j = g_j D / \sum_{l=1}^{N} s_{j,l} r_l I_{0,l} e^{-D_p a_l}$$

Multilayer Lossy Medium

$$m_j = g_j D / \sum_{l=1}^{N} s_{j,l} r_l I_{0,l} e^{-\sum_{l=1}^{p} a_{l,l} D d_l}$$

Multilayer Lossy Medium and Scatter

$$m_{j} = g_{j} D / \sum_{l=1}^{N} s_{j,l} r_{l} I_{0,l} e^{-\sum_{l=1}^{p} a_{l,l} D d_{l}} + b s_{j}$$

Stanford University

Model Estimation

$$\min_{c_{k,l},bs_{j}} \sum_{j,t,q} \left| \stackrel{\wedge}{m}_{j,t,q} - m_{j,t,q} \right|^{\gamma} + \delta R(c_{k,l})$$

$$B_{k}c_{k,l} \ge 0 \qquad \forall_{k,l}$$

$$b_{j} \ge 0 \qquad \forall_{j}$$

For:

$$m_{j,t,q} = g_{j} \Delta \lambda \sum_{\lambda=1}^{N} s_{j,\lambda} r_{\lambda,t} I_{0,\lambda} e^{-\sum_{l=1}^{p} \alpha_{l,\lambda} \Delta d_{l}} + b s_{j,q}$$

$$R(c_{k,l}) = \sum_{k} \sum_{l} \frac{1}{(d_{l} - d_{l-1})^{\tau}} |c_{k,l} - c_{k,l-1}|$$

First term quasi-convex, for $\gamma \ge 1$

• *m* is smooth, convex

Use iterative first-order Taylor expansions for $m \rightarrow$ affine

Solve via *cvx* convex optimization toolbox

Test The Model With An Underwater Color Rig

Test The Model With An Underwater Color Rig

Image Comparison at 10m: Clear and Murky Water

Water Content: Clear and Murky Water

Color Correction Underwater

Traditional color transform using 3x3 matrix:

$$\begin{bmatrix} R_d \\ G_d \\ B_d \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix} \begin{bmatrix} R_c \\ G_c \\ B_c \end{bmatrix}$$

Offset color transform using 3x4 matrix:

$$\begin{bmatrix} R_d \\ G_d \\ B_d \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} \\ c_{21} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34} \end{bmatrix} \begin{bmatrix} R_c \\ G_c \\ B_c \\ 1 \end{bmatrix}$$

$$m_j = g_j \Delta \sum_{\lambda=1}^{N} s_{j,\lambda} r_{\lambda} I_{0,\lambda} e^{-\sum_{l=1}^{p} \alpha_{l,\lambda} \Delta d_l} + bs_j$$
Stanford University

Color Correction Underwater – Murky Dive Example

Traditional color transform using 3x3 matrix:

Offset color transform using 3x4 matrix:

$$m_{j} = g_{j} \Delta \sum_{\lambda=1}^{N} s_{j,\lambda} r_{\lambda} I_{0,\lambda} e^{-\sum_{l=1}^{p} \alpha_{l,\lambda} \Delta d_{l}} + b s_{j}$$

Summary

Changing depths changes natural illumination

We can describe this with a physics-based model

Physics model is quasi-convex

Solve regularized optimization iteratively

Particulate scatter is not handled well by 3x3 color correction schemes

Build affine color correction transforms

Questions?

Acknowledgements:

Colin Roesler, Annick Bricaud ,Tetsuichi Fujiki, Sumit Chawla

Clear and Murky Water 20m Example

Water Quality-Independent Color Solutions

1. Bring artificial light

Expensive hardware

2. Apply an optical filter

Tuned to depth, water content

3. Exposure Bracketing

- Long exposure → Red
- Short exposure → Green, Blue
- Apply 3x4 color transform

Backup – Bi-convex model fitting